

Evaluación del rendimiento de diferentes métodos analíticos para la detección de *Mycobacterium avium* subsp. *paratuberculosis* en leche tomando como referencia la norma ISO 16140-2:2016

ORIGINAL RESEARCH published: 15 March 2019

Estimation of Performance
Characteristics of Analytical
Methods for Mycobacterium avium
subsp. paratuberculosis Detection in
Dairy Products

Sophie Butot¹⁺, Matteo Ricchi², Iker A. Sevilla³, Lise Michot¹, Elena Molina³, Maitane Tello³, Simone Busso³, Norma Arrigoni³, Joseba M. Garrido³ and David Tomas

Nestlé, IZSLER, NEIKER

Mycobacterium paratuberculosis as a cause of Crohn's disease

Adrienne L. McNees, Ph.D.1. Diane Markesich, Ph.D.2. Najah R. Zayyani, M.D.3. and David Y. Graham, M.D.4

Original Article

Applied Microbiology

REVIEW ARTICLE

Contamination of food products with Mycobacterium avium paratuberculosis: a systematic review

M.M. Eltholth, V.R. Marsh, S. Van Winden and F.J. Guitian

		Sargles		Results Chi+ver	
Authors .	Country			Culture	
Geo et al. 2002 Grant et al. 2002 O'Relly et al. 2004 Après et al. 2005	Canada UK. Ineland Canifi Republic	710 retail puseuriced milk samples 567 commercially posteurized milk samples 337 pistaucined milk samples 244 commercially posteuriced milk samples 100 locally parliamated milk samples devised from infected herets	15% 158% 98% N/A N/A	0% 18% 0% 16% 20%	
751	Preventive Veterinary Medicine		79	100	

Mycobacterium avium ssp. paratuberculosis detection in animals, food, water and other sources or vehicles of human exposure: A scoping review of the existing evidence

cultivo

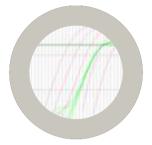
Journal of Applied Microbiology

PCR

PMS-PA

Sensitive and specific detection of viable Mycobacterium avium subsp. paratuberculosis in raw milk by the peptide-mediated magnetic separation-phage assay

A.C.G. Foddal, I.R. Grant @



Lisa Waddell 4-5.4, Andrijana Rajičii, Katharina Stärkii, Scott A. McEwenii

Objetivo

Evaluar el rendimiento de 3 métodos para la detección de M. avium subsp. paratuberculosis (MAP) en leche

Abordaje

Evaluación ciega por dos laboratorios independientes siguiendo el protocolo internacional ISO 16140-2:2016 (Microbiología de la cadena alimentaria. Validación de métodos)

- Parámetros:

· Sensibilidad (SE) y Veracidad (Trueness; T)

	Reference value positive	Reference value negative
Method positive	+/+ Positive	-/+ Positive
detected)	Agreement (PA)	Deviation (PD)
Method negative	+/- Negative	-/- Negative
(not detected)	Deviation (ND)	Agreement (NA)

$$SE = \frac{(PA + PD)}{(PA + ND + PD)} \times 100$$

$$SE = \frac{(PA + PD)}{(PA + ND + PD)} \times 100$$
 $T = \frac{(PA + NA)}{(PA + ND + PD + NA)} \times 100$

· Límite de Detección (LOD₉₅). Compl. log-log model (Wilrich et al. 2009)

ESTUDIO 1

SE y T (360 muestras/lab)

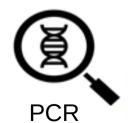
Nº muestras por método

Nivel de inoculación	L0	L1	L2
Leche tratada térmicamente	32	16	32
Leche en polvo	32	16	32
Leche cruda	32	16	32

ESTUDIO 2

LOD (450 muestras/lab)

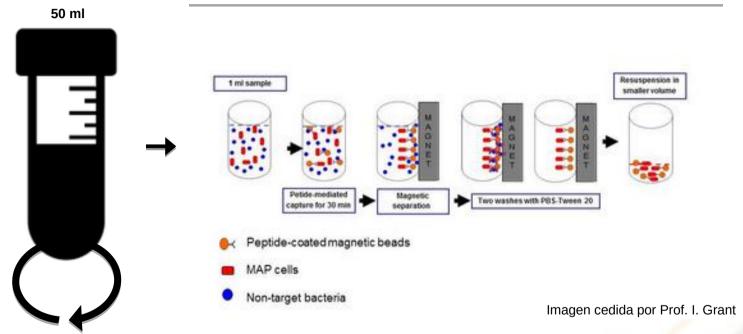
Nº muestras por método


por motor				
Nivel de inoculación	L0	L1	L2	L3
Leche tratada térmicamente	10	40	40	10
Leche en polvo	10	40	40	10
Leche cruda	10	40	40	10

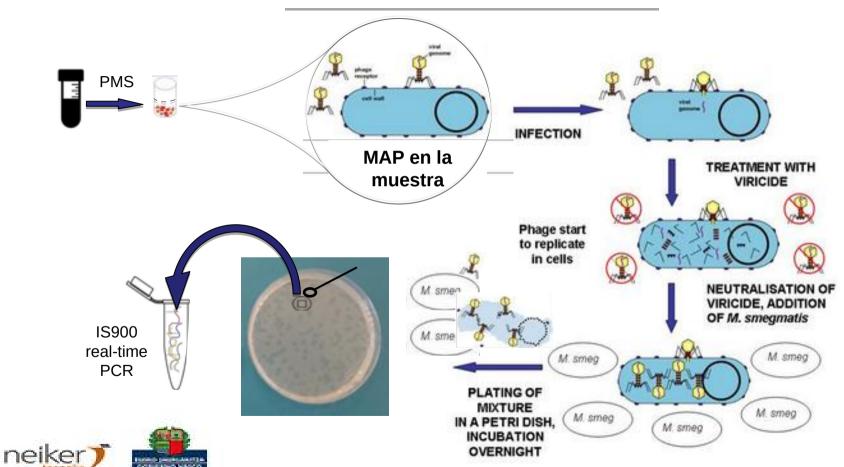
NEIKER & IZSLER

HEYM comercial y casero descontaminación (leche cruda) (Grant *et al.* 2002)

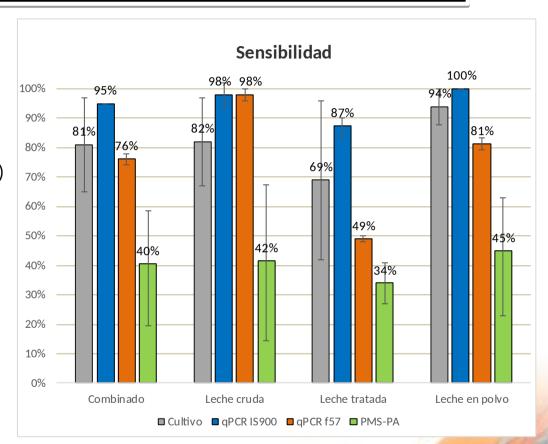
DNA: Adiapure real-time PCR IS900 y F57 (Donaghy *et al.* 2011, Ricchi *et al.* 2014)



peptide-mediated magnetic separation & phage-assay confirmación calvas: real-time PCR IS900 (Donaghy *et al.* 2011, Ricchi *et al.* 2014, Foddai *et al.* 2017)



Peptide-mediated magnetic separation (PMS)

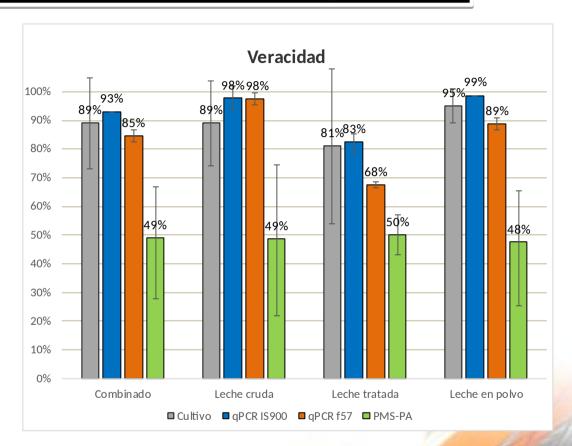

Resultados Estudio 1: Sensibilidad y Veracidad

Cultivo (69-94%; global 81%)

IS900 qPCR (87-100%; global 95%)

F57 qPCR (49-98%; global 76%)

PMS-PA (34-45%; global 40%)


Resultados Estudio 1: Sensibilidad y Veracidad

Cultivo (81-95%; global 89%)

IS900 qPCR (83-99%; global 93%)

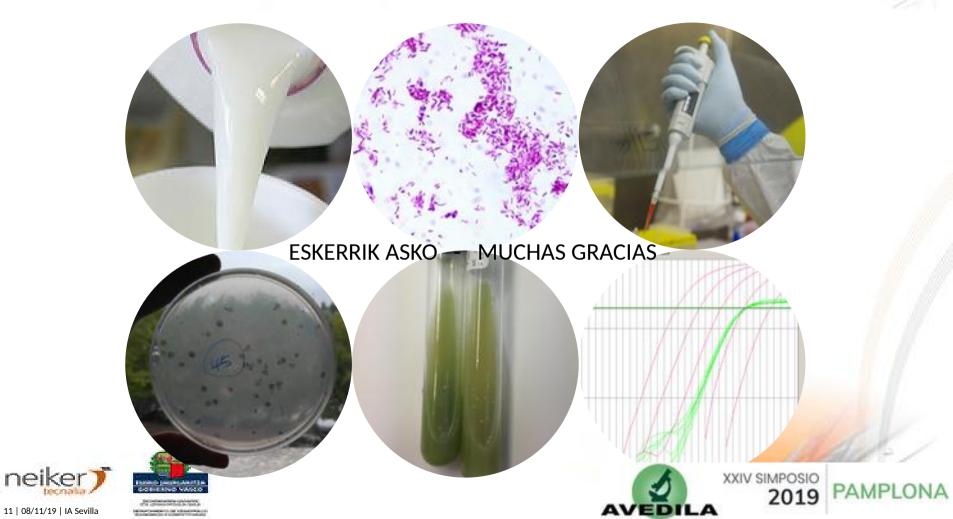
F57 qPCR (68-98%; global 85%)

PMS-PA (48-50%; global 49%)

Resultados Estudio 2: LOD_{95%}

		MÉTODO	Log CFU/50 ml (CI 95%)	CFU/ml
	Leche tratada	cultivo	2,44 (2,26;2,61)	5
		IS900 qPCR	3,62 (3,44;3,80)	83
	térmicamente	F57 qPCR	4,26 (3,97;4,54)	364
		PMS-PA	4,30 (3,99;4,62)	399
		cultivo	2,86 (2,57;3,15)	14
	Leche en polvo	IS900 qPCR	3,34 (3,11;3,58)	44
		F57 qPCR	3,78 (3,58;3,98)	121
		PMS-PA	3,80 (3,59;4,00)	126
	Leche cruda	cultivo	4,83 (4,53;5,15)	1.352
		IS900 qPCR	3,37 (3,13;3,62)	47
		F57 qPCR	4,34 (4,11;4,57)	438
		PMS-PA	4,30 (4,08;4,51)	399

Conclusiones


El rendimiento de PMS-PA fue inferior al de los otros dos métodos según la metodología ISO aplicada, por lo que no se recomienda su uso como método único en programas de vigilancia de MAP en leche

El cultivo y la real-time IS900 PCR son los métodos más apro<mark>piado</mark>s para la detección de MAP en leche (ISO 16140-2:2016)

La real-time IS900 PCR representa una alternativa al cultivo apropiada y recomendable para el cribado de muestras, siempre que no sea necesario evaluar la viabilidad de MAP

